Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Light and temperature sensing and signaling in induction of bud dormancy in woody plants.

Identifieur interne : 003201 ( Main/Exploration ); précédent : 003200; suivant : 003202

Light and temperature sensing and signaling in induction of bud dormancy in woody plants.

Auteurs : Jorunn E. Olsen [Norvège]

Source :

RBID : pubmed:20213333

Descripteurs français

English descriptors

Abstract

In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.

DOI: 10.1007/s11103-010-9620-9
PubMed: 20213333


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Light and temperature sensing and signaling in induction of bud dormancy in woody plants.</title>
<author>
<name sortKey="Olsen, Jorunn E" sort="Olsen, Jorunn E" uniqKey="Olsen J" first="Jorunn E" last="Olsen">Jorunn E. Olsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway. jorunn.olsen@umb.no</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas</wicri:regionArea>
<wicri:noRegion>1432 Aas</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20213333</idno>
<idno type="pmid">20213333</idno>
<idno type="doi">10.1007/s11103-010-9620-9</idno>
<idno type="wicri:Area/Main/Corpus">003270</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003270</idno>
<idno type="wicri:Area/Main/Curation">003270</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003270</idno>
<idno type="wicri:Area/Main/Exploration">003270</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Light and temperature sensing and signaling in induction of bud dormancy in woody plants.</title>
<author>
<name sortKey="Olsen, Jorunn E" sort="Olsen, Jorunn E" uniqKey="Olsen J" first="Jorunn E" last="Olsen">Jorunn E. Olsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway. jorunn.olsen@umb.no</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas</wicri:regionArea>
<wicri:noRegion>1432 Aas</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Clocks (MeSH)</term>
<term>Cold Temperature (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Gibberellins (metabolism)</term>
<term>Light (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Picea (genetics)</term>
<term>Picea (growth & development)</term>
<term>Picea (radiation effects)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (radiation effects)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (radiation effects)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basse température (MeSH)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Horloges biologiques (MeSH)</term>
<term>Lumière (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Picea (croissance et développement)</term>
<term>Picea (effets des radiations)</term>
<term>Picea (génétique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (génétique)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (effets des radiations)</term>
<term>Pousses de plante (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gibberellins</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Picea</term>
<term>Populus</term>
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Picea</term>
<term>Populus</term>
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Picea</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Picea</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Picea</term>
<term>Populus</term>
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de croissance végétal</term>
<term>Gibbérellines</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Picea</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Clocks</term>
<term>Cold Temperature</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Light</term>
<term>Photoperiod</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Gènes de plante</term>
<term>Horloges biologiques</term>
<term>Lumière</term>
<term>Photopériode</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20213333</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>73</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Light and temperature sensing and signaling in induction of bud dormancy in woody plants.</ArticleTitle>
<Pagination>
<MedlinePgn>37-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-010-9620-9</ELocationID>
<Abstract>
<AbstractText>In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Olsen</LastName>
<ForeName>Jorunn E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway. jorunn.olsen@umb.no</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001683" MajorTopicYN="N">Biological Clocks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="Y">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20213333</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-010-9620-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2001 Apr 26;410(6832):1116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11323677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):248-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(3):551-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19624471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Feb;29(2):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(4):735-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2344-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):589-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Feb;12(1):63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18951837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):875-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 1999 Dec;18(4):167-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Apr;214(6):920-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11941469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Sep;23(13):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(3):615-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Mar 10;19(5):359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19230666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jul;70(4):359-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19288213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Feb;47(2):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19097801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Feb;28(2):311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Mar;27(3):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Mar;24(3):124-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18243399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jan;25(1):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):767-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jul;217(3):442-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Mar 10;19(5):408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 26;324(4):1296-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15504355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Mar;49(3):291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18203732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2501-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Nov;12(11):514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17933576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Apr 1;22(7):918-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(1):103-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 May 18;316(5827):1030-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(11):3061-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17901196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Dec;174(4):2095-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):403-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Feb;114(2):207-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11903967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Feb;15(2):160-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9491613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 10;102(19):7037-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Jul;4(7):642-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1952 Aug;38(8):662-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16589159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 12;9:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 May;7(3):266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15912446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1913-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692350</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Olsen, Jorunn E" sort="Olsen, Jorunn E" uniqKey="Olsen J" first="Jorunn E" last="Olsen">Jorunn E. Olsen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003201 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003201 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20213333
   |texte=   Light and temperature sensing and signaling in induction of bud dormancy in woody plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20213333" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020